Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials
نویسنده
چکیده
Presburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, if p = (p1, . . . , pn) are a subset of the free variables in a Presburger formula, we can define a counting function g(p) to be the number of solutions to the formula, for a given p. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. Finally, we translate known computational complexity results into this setting and discuss open directions. §
منابع مشابه
An Algorithmic Theory of Lattice Points in Polyhedra
We discuss topics related to lattice points in rational polyhedra, including efficient enumeration of lattice points, “short” generating functions for lattice points in rational polyhedra, relations to classical and higher-dimensional Dedekind sums, complexity of the Presburger arithmetic, efficient computations with rational functions, and others. Although the main slant is algorithmic, struct...
متن کاملParametrized Presburger Arithmetic: Logic, Combinatorics, and Quasi-polynomial Behavior
Parametric Presburger arithmetic concerns families of sets St ⊆ Zd, for t ∈ N, that are defined using addition, inequalities, constants in Z, Boolean operations, multiplication by t, and quantifiers on variables ranging over Z. That is, such families are defined using quantifiers and Boolean combinations of formulas of the form a(t) ·x ≤ b(t), where a(t) ∈ Z[t]d, b(t) ∈ Z[t]. A function g : N →...
متن کاملParametric Presburger Arithmetic: Logic, Combinatorics, and Quasi-polynomial Behavior
Parametric Presburger arithmetic concerns families of sets St ⊆Zd , for t ∈N, that are defined using addition, inequalities, constants in Z, Boolean operations, multiplication by t, and quantifiers on variables ranging over Z. That is, such families are defined using quantifiers and Boolean combinations of formulas of the form a(t) ·x≤ b(t), where a(t) ∈ Z[t]d ,b(t) ∈ Z[t]. A function g : N→ Z ...
متن کاملThe Unreasonable Ubiquitousness of Quasi-polynomials
A function g, with domain the natural numbers, is a quasi-polynomial if there exists a period m and polynomials p0, p1, . . . , pm−1 such that g(t) = pi(t) for t ≡ i mod m. Quasi-polynomials classically – and “reasonably” – appear in Ehrhart theory and in other contexts where one examines a family of polyhedra, parametrized by a variable t, and defined by linear inequalities of the form a1x1 + ...
متن کاملSolving Univariate P-adic Constraints
We describe an algorithm for solving systems of univariate p-adic constraints. In analogy with univariate real constraints, we formalize univariate p-adic constraints as univariate polynomial equations and order comparisons between p-adic values of univariate polynomials. Systems of constraints are arbitrary boolean combinations of such constraints. Our method combines techniques of Presburger ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013